Fisher+Kernel Criterion for Discriminant Analysis

Fisher+Kernel Criterion for Discriminant Analysis,10.1109/CVPR.2005.162,Shu Yang,Shuicheng Yan,Dong Xu,Xiaoou Tang,Chao Zhang

Fisher+Kernel Criterion for Discriminant Analysis   (Citations: 4)
BibTex | RIS | RefWorks Download
We simultaneously approach two tasks of nonlinear dis- criminant analysis and kernel selection problem by pro- posing a unified criterion, Fisher+Kernel Criterion. In addition, an efficient procedure is derived to optimize this new criterion in an iterative manner. More specifically, original input vector is first transformed into a higher dimensional feature matrix through a battery of nonlinear mappings involved in different kernels. Then, based on the feature matrices, FKC is presented within two coupled projection spaces: one projection space is used to search for the optimal combinations of kernels; while the other encodes the optimal nonlinear discriminating projection directions. Our proposed method is a unified framework for both kernel selection and nonlinear discriminant analysis. Besides, the algorithm potentially alleviates overfitting problem existing in traditional KDA and has no singularity problems in most cases. The effectiveness of our proposed algorithm is validated by extensive face recognition experiments on several datasets.
Conference: Computer Vision and Pattern Recognition - CVPR , vol. 2, pp. 197-202, 2005
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: