Academic
Publications
PARAMETRIC AND SEMIPARAMETRIC ESTIMATION OF REGRESSION MODELS FITTED TO SURVEY DATA

PARAMETRIC AND SEMIPARAMETRIC ESTIMATION OF REGRESSION MODELS FITTED TO SURVEY DATA,DANNY PFEFFERMANN

PARAMETRIC AND SEMIPARAMETRIC ESTIMATION OF REGRESSION MODELS FITTED TO SURVEY DATA   (Citations: 26)
BibTex | RIS | RefWorks Download
SUMMARY. This paper proposes two new classes of estimators for regression models fitted to survey data. The proposed estimators account for the eect of nonignorable sampling schemes which are known to bias standard estimators. Both classes derive from relationships between the population distribution and the sample distribution of the sample measurements. The first class consists of parametric estimators. These are obtained by extracting the sample distribution as a function of the population distribution and the sample selection probabilities and applying maximum likelihood theory to this distribution. The second class consists of semi-parametric estimators, obtained by utilizing existing relationships between moments of the two distributions. New tests for sampling ignorability based on these relationships are developed. The proposed estimators and other estimators in common use are applied to real data and further compared in a simulation study. The simulations enable also to study the performance of the sampling ignorability tests and bootstrap variance estimators.
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: