Academic
Publications
Spatial Autocorrelation and Autoregressive Models in Ecology

Spatial Autocorrelation and Autoregressive Models in Ecology,10.2307/3100099,Ecological Monographs,Jeremy W. Lichstein,Theodore R. Simons,Susan A. Shr

Spatial Autocorrelation and Autoregressive Models in Ecology   (Citations: 288)
BibTex | RIS | RefWorks Download
Recognition and analysis of spatial autocorrelation has defined a new par- adigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available software, to examine breeding habitat relationships for three common Neotropical migrant songbirds in the southern Appalachian Mountains of North Carolina and Tennessee, USA. In preliminary models that ignored space, the abundance of all three species was cor- related with both local- and landscape-scale habitat variables. These models were then modified to account for broadscale spatial trend (via trend surface analysis) and fine-scale autocorrelation (via an autoregressive spatial covariance matrix). Residuals from ordinary least squares regression models were autocorrelated, indicating that the assumption of independent errors was violated. In contrast, residuals from autoregressive models showed little spatial pattern, suggesting that these models were appropriate. The magnitude of habitat effects tended to decrease, and the relative importance of different habitat variables shifted when we incorporated broadscale and then fine-scale space into the analysis. The degree to which habitat effects changed when space was added to the models was roughly correlated with the amount of spatial structure in the habitat variables. Spatial pattern in the residuals from ordinary least squares models may result from failure to include or adequately measure autocorrelated habitat variables. In addition, con- tagious processes, such as conspecific attraction, may generate spatial patterns in species abundance that cannot be explained by habitat models. For our study species, spatial patterns in the ordinary least squares residuals suggest that a scale of 500-1000 m would be ap- propriate for investigating possible contagious processes.
Journal: Ecological Monographs - ECOL MONOGR , vol. 72, no. 3, pp. 445-463, 2002
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: