Academic
Publications
A differential evolution based neural network approach to nonlinear system identification

A differential evolution based neural network approach to nonlinear system identification,10.1016/j.asoc.2010.01.006,Applied Soft Computing,Bidyadhar

A differential evolution based neural network approach to nonlinear system identification   (Citations: 3)
BibTex | RIS | RefWorks Download
This paper addresses the effectiveness of soft computing approaches such as evolutionary computation (EC) and neural network (NN) to system identification of nonlinear systems. In this work, two evolutionary computing approaches namely differential evolution (DE) and opposition based differential evolution (ODE) combined with Levenberg Marquardt algorithm have been considered for training the feed-forward neural network applied for nonlinear system identification. Results obtained envisage that the proposed combined opposition based differential evolution neural network (ODE-NN) approach to identification of nonlinear system exhibits better model identification accuracy compared to differential evolution neural network (DE-NN) approach. The above method is finally tested on a one degree of freedom (1DOF) highly nonlinear twin rotor multi-input–multi-output system (TRMS) to verify the identification performance.
Journal: Applied Soft Computing - ASC , vol. 11, no. 1, pp. 861-871, 2011
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: