Academic
Publications
Low-temperature H2O2-powered actuators for biorobotics: Thermodynamic and kinetic analysis

Low-temperature H2O2-powered actuators for biorobotics: Thermodynamic and kinetic analysis,10.1109/ROBOT.2010.5509936,Flavia Vitale,Dino Accoto,Luca T

Low-temperature H2O2-powered actuators for biorobotics: Thermodynamic and kinetic analysis  
BibTex | RIS | RefWorks Download
The need for novel, high performance actuators felt in several fields of robotics, such as assistive or rehabilitative robotics, is not fully satisfied by current actuation means. This fosters an intense research on novel energy transduction methods. In particular, propellant-based chemical actuators, able to directly convert chemical energy into mechanical energy, appear very promising, although their potential in robotics has not yet been deeply investigated. This work focuses on H2O2, used as propellant for actuators. This chemical was first used in robotics, with excellent results, by Goldfarb and collaborators, in 2003. H2O2 dissociation is strongly exothermic, which generates important design issues when the actuated machine operates in close proximity to the human body. In this paper it is shown that: 1) is possible to operate the decomposition process at acceptable temperature, by means of basic solutions of hydrogen peroxide; 2) for basic pH solutions, tin becomes an effective catalyst for H2O2 dissociation. A kinetic model of H2O2 dissociation in basic solutions is provided, that is in good agreement with experimental data. We show how the model can be used to gather the necessary information for the dimensioning of H2O2-based actuators.
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.