Sign in
Author

Conference

Journal

Organization

Year

DOI
Look for results that meet for the following criteria:
since
equal to
before
between
and
Search in all fields of study
Limit my searches in the following fields of study
Agriculture Science
Arts & Humanities
Biology
Chemistry
Computer Science
Economics & Business
Engineering
Environmental Sciences
Geosciences
Material Science
Mathematics
Medicine
Physics
Social Science
Multidisciplinary
Keywords
(4)
Gravitational Wave Detector
Milky Way
Detection Rate
Neutron Star
Subscribe
Academic
Publications
Predictions for the rates of compact binary coalescences observable by groundbased gravitationalwave detectors
Predictions for the rates of compact binary coalescences observable by groundbased gravitationalwave detectors,10.1088/02649381/27/17/173001,Classi
Edit
Predictions for the rates of compact binary coalescences observable by groundbased gravitationalwave detectors
(
Citations: 3
)
BibTex

RIS

RefWorks
Download
J. Abadie
,
B. P. Abbott
,
R. Abbott
,
M. Abernathy
,
T. Accadia
,
F. Acerneseac
,
C. Adams
,
R. Adhikari
,
P. Ajith
,
B. Allen
,
G. Allen
,
E. Amador Ceron
http://academic.research.microsoft.com/io.ashx?type=5&id=18856323&selfId1=0&selfId2=0&maxNumber=12&query=
We present an uptodate, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the groundbased gravitationalwave detectors {LIGO} and Virgo. Astrophysical estimates for compactbinary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. Themost confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr(1) per
Milky Way
Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr(1) MWEG(1) to 1000 Myr(1) MWEG(1) (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 ( erratum)). We convert coalescence rates into detection rates based on data from the {LIGO} S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely
detection rate
of 0.02 per year for Initial {LIGO}Virgo interferometers, with a plausible range between 2 x 10(4) and 0.2 per year. The likely binary neutronstar
detection rate
for the Advanced {LIGO}Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.
Journal:
Classical and Quantum Gravity  CLASS QUANTUM GRAVITY
, vol. 27, no. 17, 2010
DOI:
10.1088/02649381/27/17/173001
Cumulative
Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
(
dx.doi.org
)
(
arxiv.org
)
(
adsabs.harvard.edu
)
Citation Context
(1)
...We await the Advanced LIGO upgrade, scheduled for completion around 2015, at which time we confidently expect to detect signals at last [21,
22
]...
Peter R. Saulson
.
Josh Goldberg and the physical reality of gravitational waves
References
(50)
Erratum: ``The Cosmic Coalescence Rates for Double Neutron Star Binaries''(ApJ, 601, L179 [2004])
(
Citations: 31
)
V. Kalogera
,
C. Kim
,
D. R. Lorimer
,
M. Burgay
,
N. D'Amico
,
A. Possenti
,
R. N. Manchester
,
A. G. Lyne
,
B. C. Joshi
,
M. A. McLaughlin
,
M. Kramer
,
J. M. Sarkissian
http://academic.research.microsoft.com/io.ashx?type=5&id=10156641&selfId1=0&selfId2=0&maxNumber=12&query=
Journal:
Astrophysical Journal  ASTROPHYS J
, vol. 614, no. 2, pp. L137L138, 2004
BLIGO Y Laser Interferometer Gravitational Wave Observatory
(
Citations: 19
)
Unknown
Published in 2004.
Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data
(
Citations: 8
)
B. P. Abbott
,
R. Adhikari
,
P. Ajith
,
B. Allen
,
G. Allen
,
R. S. Amin
,
S. B. Anderson
,
W. G. Anderson
,
M. A. Arain
,
M. Araya
,
H. Armandula
,
P. Armor
http://academic.research.microsoft.com/io.ashx?type=5&id=11570623&selfId1=0&selfId2=0&maxNumber=12&query=
Journal:
Physical Review D  PHYS REV D
, vol. 79, no. 12, 2009
Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run
(
Citations: 7
)
B. P. Abbott
,
R. Adhikari
,
P. Ajith
,
B. Allen
,
G. Allen
,
R. S. Amin
,
S. B. Anderson
,
W. G. Anderson
,
M. A. Arain
,
M. Araya
,
H. Armandula
,
P. Armor
http://academic.research.microsoft.com/io.ashx?type=5&id=11281620&selfId1=0&selfId2=0&maxNumber=12&query=
Journal:
Physical Review D  PHYS REV D
, vol. 80, no. 4, 2009
Compact Object Modeling with the StarTrack Population Synthesis Code
(
Citations: 19
)
Krzysztof Belczynski
,
Vassiliki Kalogera
,
Frederic A. Rasio
,
Ronald E. Taam
,
Andreas Zezas
,
Tomasz Bulik
,
Thomas J. Maccarone
,
Natalia Ivanova
Journal:
Astrophysical Journal Supplement Series  ASTROPHYS J SUPPL SER
, vol. 174, no. 1, pp. 223260, 2008
Sort by:
Citations
(3)
Suitability of postNewtonian/numericalrelativity hybrid waveforms for gravitational wave detectors
Ilana MacDonald
,
Samaya Nissanke
,
Harald P. Pfeiffer
Journal:
Classical and Quantum Gravity  CLASS QUANTUM GRAVITY
, vol. 28, no. 13, 2011
Toward a third generation of gravitational wave observatories
Michele Punturo
,
Harald Lück
Journal:
General Relativity and Gravitation  GEN RELATIV GRAVIT
, vol. 43, no. 2, pp. 363385, 2011
Josh Goldberg and the physical reality of gravitational waves
Peter R. Saulson
Journal:
General Relativity and Gravitation  GEN RELATIV GRAVIT
, pp. 111