Sign in
Author

Conference

Journal

Organization

Year

DOI
Look for results that meet for the following criteria:
since
equal to
before
between
and
Search in all fields of study
Limit my searches in the following fields of study
Agriculture Science
Arts & Humanities
Biology
Chemistry
Computer Science
Economics & Business
Engineering
Environmental Sciences
Geosciences
Material Science
Mathematics
Medicine
Physics
Social Science
Multidisciplinary
Keywords
(4)
Ac Loss
Time Constant
Cable In Conduit Conductor
Central Solenoid
Subscribe
Academic
Publications
Conductor Design of CS and EF Coils for JT60SA
Conductor Design of CS and EF Coils for JT60SA,10.1109/TASC.2008.920536,IEEE Transactions on Applied Superconductivity,K. Kizu,K. Tsuchiya,K. Yoshida
Edit
Conductor Design of CS and EF Coils for JT60SA
(
Citations: 9
)
BibTex

RIS

RefWorks
Download
K. Kizu
,
K. Tsuchiya
,
K. Yoshida
,
M. Edaya
,
T. Ichige
,
H. Tamai
,
M. Matsukawa
,
A. della Corte
,
A. Di Zenobio
,
L. Muzzi
,
S. Turtu
,
J. L. Duchateau
http://academic.research.microsoft.com/io.ashx?type=5&id=19280336&selfId1=0&selfId2=0&maxNumber=12&query=
The conductor for
central solenoid
(CS) and equilibrium field (EF) coils of JT60 Super Advanced (JT60SA) were designed. The conductor for CS is Nb3Sn CableInConduit (CIC) conductor with JK2LB jacket. EF coil conductors are NbTi CIC conductor with SS316LN jacket. The field change rate (3.9 T/s), faster than ITER generates the large
AC loss
in conductor. The analyses of current sharing temperature (Tcs)margins for these coils were performed by the onedimensional fluid analysis code with transient heat loads. The margins of these coils are 1 K for the plasma standard and disruption scenarios. The minimum Tcs margin of CS conductor is 1.2 K at plasma break down (BD). The margin is increased by decreasing the rate of initial magnetization. It is found that the disruption mainly impacts the outer low field EF coil. The disruption decreases the Tcs margin of the coil by >1 K. A coupling
time constant
of <100 ms, Ni plating, and a central spiral are required for NbTi conductor.
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 18, no. 2, pp. 212215, 2008
DOI:
10.1109/TASC.2008.920536
Cumulative
Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
(
ieeexplore.ieee.org
)
(
adsabs.harvard.edu
)
(
ieeexplore.ieee.org
)
(
ieeexplore.ieee.org
)
More »
Citation Context
(5)
...The EF conductors are designed with the NbTi cable in conduit (CIC) conductor because the maximum magnetic field of each conductor is up to 4.8 T for the EFL conductor and 6.2 T for the EFH conductor [2]‐[
5
]...
...The test sample conductors are fabricated using the NbTi strands and the SS316L jacket [
5
], [7]...
H. Murakami
,
et al.
Stability Margin of NbTi CIC Conductor for JT60SA Equilibrium Field C...
...For example, the minimum margin of CS conductor is 1.2 K at plasma breakdown (BD) [
3
]...
...4.4 K, and mass flow rate 4.0 g/s. The analytical method is detailed in [
3
]...
K. Nakamura
,
et al.
AC Loss and Temperature Margin of CableinConduit Conductors for JT6...
...EF coil conductors are NbTi CICC with SS316L jacket [
3
]...
...Table I shows the major parameters of CICCs [
3
]...
K. Kizu
,
et al.
Construction of the Jacketing Facility and First Production Results of...
...The EF coil conductors are designed with NbTi cable in conduit (CIC) conductor becausemaximummagneticfield isupto 6.2T [
3
],[4].TheprototypeNbTiconductorwasdevelopedandtested to confirm the capability of real conductor by Japan Atomic Energy Agency (JAEA) and National Institute for Fusion Science (NIFS)...
H. Murakami
,
et al.
Stability and Quench Test for NbTi CIC Conductor of JT60SA Equilibriu...
...The issues on the conductor design and the coil design are explained in related papers [7], [11]–[
13
]...
K. Yoshida
,
et al.
Conceptual Design of Superconducting Magnet System for JT60SA
References
(5)
Conceptual Design of Superconducting Magnet System for JT60SA
(
Citations: 11
)
K. Yoshida
,
K. Kizu
,
K. Tsuchiya
,
H. Tamai
,
M. Matsukawa
,
M. Kikuchi
,
A. della Corte
,
L. Muzzi
,
S. Turtu
,
A. Di. Zenobio
,
A. Pizzuto
,
C. Portafaix
http://academic.research.microsoft.com/io.ashx?type=5&id=19280390&selfId1=0&selfId2=0&maxNumber=12&query=
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 18, no. 2, pp. 441446, 2008
Mechanical Design of JT60SA Magnet System
(
Citations: 5
)
K. Tsuchiya
,
Y. Suzuki
,
K. Kizu
,
K. Yoshida
,
H. Tamai
,
M. Matsukawa
,
N. Dolgetta
,
C. Portafaix
,
L. Zani
,
A. Pizzuto
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 18, no. 2, pp. 208211, 2008
A Numerical Model for the Simulation of Quench in the ITER Magnets
(
Citations: 56
)
L. Bottura
Journal:
Journal of Computational Physics  J COMPUT PHYS
, vol. 125, no. 1, pp. 2641, 1996
Test of the ITER central solenoid model coil and CS insert
(
Citations: 26
)
N. Martovetsky
,
P. Michael
,
J. Minervini
,
A. Radovinsky
,
M. Takayasu
,
C. Y. Gung
,
R. Thome
,
T. Ando
,
T. Isono
,
K. Hamada
,
T. Kato
,
K. Kawano
http://academic.research.microsoft.com/io.ashx?type=5&id=1674265&selfId1=0&selfId2=0&maxNumber=12&query=
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 12, no. 1, pp. 600605, 2002
Status of the LHC superconducting cable mass production
(
Citations: 24
)
J. D. Adam
,
T. Boutboul
,
Giorgio Cavallari
,
Z. Charifoulline
,
C.H. Denarie
,
S. Le Naour
,
D. F. Leroy
,
L. R. Oberli
,
D. Richter
,
A. P. Verweij
,
R. Wolf
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 12, no. 1, pp. 10561062, 2002
Sort by:
Citations
(9)
Stability Margin of NbTi CIC Conductor for JT60SA Equilibrium Field Coil
(
Citations: 1
)
H. Murakami
,
T. Ichige
,
K. Kizu
,
K. Tsuchiya
,
K. Yoshida
,
T. Obana
,
S. Hamaguchi
,
K. Takahata
,
N. Yanagi
,
T. Mito
,
S. Imagawa
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 21, no. 3, pp. 19911994, 2011
Test Results of a NbTi Wire for the ITER Poloidal Field Magnets: A Validation of the 2Pinning Components Model
L. Muzzi
,
G. De Marzi
,
C. Fiamozzi Zignani
,
U. Besi Vetrella
,
V. Corato
,
A. Rufoloni
,
A. della Corte
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 21, no. 3, pp. 31323137, 2011
AC Loss and Temperature Margin of CableinConduit Conductors for JT60SA Poloidal Field Coil
K. Nakamura
,
K. Nishimura
,
T. Masuda
,
T. Takao
,
H. Murakami
,
K. Yoshida
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 21, no. 3, pp. 20162019, 2011
Construction of the Jacketing Facility and First Production Results of Superconductor for JT60SA
(
Citations: 3
)
K. Kizu
,
K. Tsuchiya
,
Y. Kashiwa
,
H. Murakami
,
K. Yoshida
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 20, no. 3, pp. 538542, 2010
Stability and Quench Test for NbTi CIC Conductor of JT60SA Equilibrium Field Coil
(
Citations: 2
)
H. Murakami
,
T. Ichige
,
K. Kizu
,
K. Tsuchiya
,
K. Yoshida
,
T. Obana
,
S. Hamaguchi
,
K. Takahata
,
T. Mito
,
S. Imagawa
Journal:
IEEE Transactions on Applied Superconductivity  IEEE TRANS APPL SUPERCONDUCT
, vol. 20, no. 3, pp. 512516, 2010