Academic
Publications
Line-narrowing in proton-detected nitrogen-14 NMR

Line-narrowing in proton-detected nitrogen-14 NMR,10.1016/j.jmr.2009.09.018,Journal of Magnetic Resonance,Simone Cavadini,Veronika Vitzthum,Simone Ulz

Line-narrowing in proton-detected nitrogen-14 NMR   (Citations: 5)
BibTex | RIS | RefWorks Download
In solids spinning at the magic angle, the indirect detection of single-quantum (SQ) and double-quantum (DQ) 14N spectra (I=1) via spy nuclei S=1/2 such as protons can be achieved in the manner of heteronuclear single- or multiple-quantum correlation (HSQC or HMQC) spectroscopy. The HMQC method relies on the excitation of two-spin coherences of the type T11IT11S and T21IT11S at the beginning of the evolution interval t1. The spectra obtained by Fourier transformation from t1 to ω1 may be broadened by the homogenous decay of the transverse terms of the spy nuclei S. This broadening is mostly due to homonuclear dipolar S–S′ interactions between the proton spy nuclei. In this work we have investigated the possibility of inserting rotor-synchronized symmetry-based C or R sequences and decoupling schemes such as Phase-Modulated Lee–Goldburg (PMLG) sequences in the evolution period. These schemes reduce the homonuclear proton–proton interactions and lead to an enhancement of the resolution of both SQ and DQ proton-detected 14N HMQC spectra. In addition, we have investigated the combination of HSQC with symmetry-based sequences and PMLG and shown that the highest resolution in the 14N dimension is achieved by using HSQC in combination with symmetry-based sequences of the R-type. We show improvements in resolution in samples of l-alanine and the tripeptide ala-ala-gly (AAG). In particular, for l-alanine the width of the 14N SQ peak is reduced from 2 to 1.2kHz, in agreement with simulations. We report accurate measurements of quadrupolar coupling constants and asymmetry parameters for amide 14N in AAG peptide bonds.
Journal: Journal of Magnetic Resonance - J MAGN RESON , vol. 202, no. 1, pp. 57-63, 2010
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: