Academic
Publications
Analytic properties of mirror maps

Analytic properties of mirror maps,Christian Krattenthaler,Tanguy Rivoal

Analytic properties of mirror maps  
BibTex | RIS | RefWorks Download
We consider a multi-parameter family of canonical coordinates and mirror maps o\ riginally introduced by Zudilin [Math. Notes 71 (2002), 604-616]. This family includes many of the known one-variable mirror maps as special cases, in particular many of modular origin and the celebrated example of Candelas, de la Ossa, Green and\ Parkes [Nucl. Phys. B359 (1991), 21-74] associated to the quintic hypersurface in $\mathbb P^4(\mathbb C)$. In [Duke Math. J. 151 (2010), 175-218], we proved that all coeffi\ cients in the Taylor expansions at 0 of these canonical coordinates (and, hence, of the corresponding mirror maps) are integers. Here we prove that all coefficients in the Taylor expansions at 0 of these canonical coordinates are positive. Furthermore, we provide several results pertaining to the behaviour of the canonical coordinates and mirror maps as complex functions. In particular, we address analytic continuation, points of singularity, and radius of convergence of these functions. We present several very precise conjectures on the radius of convergence of the mirror maps and the sign pattern of the coefficients in their Taylor expansions at 0.
Published in 2011.
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.