Improvement of ischemic damage in gerbil hippocampal neurons by procaine

Improvement of ischemic damage in gerbil hippocampal neurons by procaine,10.1016/S0006-8993(98)00011-0,Brain Research,Junfeng Chen,Naoto Adachi,Keyue

Improvement of ischemic damage in gerbil hippocampal neurons by procaine   (Citations: 7)
BibTex | RIS | RefWorks Download
Acute cerebral ischemia induces membrane depolarization in the neuron, thereby incurring the simultaneous influx of various ions such as Na+ and Ca2+. Since procaine possesses the ability to inhibit the release of Ca2+ from intracellular Ca2+ stores to the cytosol as well as the ability to block Na+ channels, the effects of procaine on ischemia were investigated in the present study in gerbils both in vivo and in vitro. The histologic outcome was evaluated 7 days after 3 min of transient forebrain ischemia by assessing delayed neuronal death in hippocampal CA1 pyramidal cells in animals administered procaine (0.2, 0.4, or 2 μmol) intracerebroventricularly 10 min before ischemia and in animals given saline. The changes in the direct-current potential shift in the hippocampal CA1 area were measured using an identical animal model. A hypoxia-induced intracellular Ca2+ increase was evaluated by in vitro microfluorometry in gerbil hippocampal slices, and the effects of procaine (10, 50, and 100 μmol/l) on the Ca2+ accumulation were examined. Additionally, the effect of procaine (100 μmol/l) in a Ca2+-free condition was investigated. The histologic outcome was improved and the onset of the ischemia-induced membrane depolarization was prolonged by the preischemic administration of procaine. The increase in the intracellular concentration of Ca2+ induced by the in vitro hypoxia was suppressed by the perfusion of procaine-containing mediums (50 and 100 μmol/l), regarding both the initiation and the extent of the increase. A hypoxia-induced intracellular Ca2+ elevation in the Ca2+-free condition was observed, and the perfusion with procaine (100 μmol/l) inhibited this elevation. Procaine helps protect neurons from ischemia by suppressing the direct-current potential shift and by inhibiting the release of Ca2+ from the intracellular Ca2+ stores, as well as by inhibiting the influx of Ca2+ from the extracellular space.
Journal: Brain Research - BRAIN RES , vol. 792, no. 1, pp. 16-23, 1998
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: