Academic
Publications
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products

One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products,10.1073/pnas.120163297,Proceedings of The National Academy of S

One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products   (Citations: 2662)
BibTex | RIS | RefWorks Download
We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers pro- vide the homology to the targeted gene(s). In this procedure, recombination requires the phage l Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR- generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the proce- dure can be done in wild-type cells.
Journal: Proceedings of The National Academy of Sciences - PNAS , vol. 97, no. 12, pp. 6640-6645, 2000
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: