Academic
Publications
Effect of the P700 pre-oxidation and point mutations near A 0 on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii

Effect of the P700 pre-oxidation and point mutations near A 0 on the reversibility of the primary charge separation in Photosystem I from Chlamydomona

Effect of the P700 pre-oxidation and point mutations near A 0 on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii   (Citations: 4)
BibTex | RIS | RefWorks Download
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A0, has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the “primary electron donor,” P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of ∼7 ps and ∼25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A0: both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A0. We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A0−→AA0 charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A0 axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A0−.
Journal: Biochimica Et Biophysica Acta-bioenergetics - BBA-BIOENERGETICS , vol. 1797, no. 1, pp. 106-112, 2010
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: