Information Content Weighting for Perceptual Image Quality Assessment

Information Content Weighting for Perceptual Image Quality Assessment,10.1109/TIP.2010.2092435,IEEE Transactions on Image Processing,Zhou Wang,Qiang L

Information Content Weighting for Perceptual Image Quality Assessment   (Citations: 6)
BibTex | RIS | RefWorks Download
Many state-of-the-art perceptual image quality as- sessment (IQA) algorithms share a common two-stage structure: local quality/distortion measurement followed by pooling. While significant progress has been made in measuring local image quality/distortion, the pooling stage is often done in ad-hoc ways, lacking theoretical principles and reliable computational models. This paper aims to test the hypothesis that when viewing natural images, the optimal perceptual weights for pooling should be proportional to local information content, which can be estimated in units of bit using advanced statistical models of natural images. Our extensive studies based upon six publicly-available sub- ject-rated image databases concluded with three useful findings. First, information content weighting leads to consistent improve- ment in the performance of IQA algorithms. Second, surprisingly, with information content weighting, even the widely criticized peak signal-to-noise-ratio can be converted to a competitive perceptual quality measure when compared with state-of-the-art algorithms. Third, the best overall performance is achieved by combining information content weighting with multiscale struc- tural similarity measures. Index Terms—Gaussian scale mixture (GSM), image quality assessment (IQA), pooling, information content measure, peak signal-to-noise-ratio (PSNR), structural similarity (SSIM), statis- tical image modeling.
Journal: IEEE Transactions on Image Processing , vol. 20, no. 5, pp. 1185-1198, 2011
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: