Academic
Publications
Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties

Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties,10.1007/s11051-010-0030-3,Jo

Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties   (Citations: 1)
BibTex | RIS | RefWorks Download
Wibke Busch, Susanne Bastian, Ulrike Trahorsch, Maria Iwe, Dana Kühnel, Tobias Meißner, Armin Springer, Michael Gelinsky, Volkmar Richter, Chrysanthy Ikonomidou, Annegret Potthoff, Irina Lehmannhttp://academic.research.microsoft.com/io.ashx?type=5&id=39893860&selfId1=0&selfId2=0&maxNumber=12&query=
Cellular internalisation of industrial engineered nanoparticles is undesired and a reason for concern. Here we investigated and compared the ability of seven different mammalian cell cultures in vitro to incorporate six kinds of engineered nanoparticles, focussing on the role of cell type and particle properties in particle uptake. Uptake was examined using light and electron microscopy coupled with energy dispersive X-ray spectroscopy (EDX) for particle element identification. Flow cytometry was applied for semi-quantitative analyses of particle uptake and for exploring the influence on uptake by the phagocytosis inhibitor Cytochalasin D (CytoD). All particles studied were found to enter each kind of cultured cells. Yet, particles were never found within cell nuclei. The presence of the respective particles within the cells was confirmed by EDX. Live-cell imaging revealed the time-dependent process of internalisation of technical nanoparticles, which was exemplified by tungsten carbide particle uptake into the human skin cells, HaCaT. Particles were found to co-localise with lysosomal structures within the cells. The incorporated nanoparticles changed the cellular granularity, as measured by flow cytometry, already after 3 h of exposure in a particle specific manner. By correlating particle properties with flow cytometry data, only the primary particle size was found to be a weakly influential property for particle uptake. CytoD, an inhibitor of actin filaments and therewith of phagocytosis, significantly inhibited the internalisation of particle uptake in only two of the seven investigated cell cultures. Our study, therefore, supports the notion that nanoparticles can enter mammalian cells quickly and easily, irrespective of the phagocytic ability of the cells.
Journal: Journal of Nanoparticle Research - J NANOPART RES , vol. 13, no. 1, pp. 293-310, 2011
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: