Academic
Publications
Evolution of deep-water stratigraphic architecture, Magallanes Basin, Chile

Evolution of deep-water stratigraphic architecture, Magallanes Basin, Chile,10.1016/j.marpetgeo.2010.05.002,Marine and Petroleum Geology,Brian W. Roma

Evolution of deep-water stratigraphic architecture, Magallanes Basin, Chile   (Citations: 9)
BibTex | RIS | RefWorks Download
The ˜4000 m thick and ∼20 Myr deep-water sedimentary fill of the Upper Cretaceous Magallanes Basin was deposited in three major phases, each with contrasting stratigraphic architecture: (1) the oldest deep-water formation (Punta Barrosa Formation) comprises tabular to slightly lenticular packages of interbedded sandy turbidites, slurry-flow deposits, and siltstone that are interpreted to record lobe deposition in an unconfined to weakly ponded setting; (2) the overlying, 2500 m thick and shale-dominated Cerro Toro Formation includes a succession of stacked conglomeratic and sandstone channel-fill deposits with associated finer-grained overbank deposits interpreted to record deposition in a foredeep-axial channel-levee system; (3) the final phase of deep-water sedimentation is characterized by sandstone-rich successions of highly variable thickness and cross-sectional geometry and mudstone-rich mass transport deposits (MTDs) that are interpreted to record deposition at the base-of-slope and lower slope segments of a prograding delta-fed slope system. The deep-water formations are capped by shallow-marine and deltaic deposits of the Dorotea Formation.These architectural changes are associated with the combined influences of tectonically driven changes and intrinsic evolution, including: (1) the variability of amount and type of source material, (2) variations in basin shape through time, and (3) evolution of the fill as a function of prograding systems filling the deep-water accommodation. While the expression of these controls in the stratigraphic architecture of other deep-water successions might differ in detail, the controls themselves are common to all deep-water basins. Information about source material and basin shape is contained within the detrital record and, when integrated and analyzed within the context of stratigraphic patterns, attains a more robust linkage of processes to products than stratigraphic characterization alone.
Journal: Marine and Petroleum Geology - MAR PETROL GEOL , vol. 28, no. 3, pp. 612-628, 2011
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: