Academic
Publications
Location Diversity: Enhanced Privacy Protection in Location Based Services

Location Diversity: Enhanced Privacy Protection in Location Based Services,10.1007/978-3-642-01721-6_5,Mingqiang Xue,Panos Kalnis,Hung Keng Pung

Location Diversity: Enhanced Privacy Protection in Location Based Services   (Citations: 3)
BibTex | RIS | RefWorks Download
Location-based Services are emerging as popular applications in pervasive computing. Spatial k-anonymity is used in Location-based Services to protect privacy, by hiding the association of a specific query with a specific user. Unfortunately, this approach fails in many practical cases such as: (i) personalized services, where the user identity is required, or (ii) applications involving groups of users (e.g., employees of the same company); in this case, associating a query to any member of the group, violates privacy. In this paper, we introduce the concept of Location Diversity, which solves the above-mentioned problems. Location Diversity improves Spatial k-anonymity by ensuring that each query can be associated with at least ℓ different semantic locations (e.g., school, shop, hospital, etc). We present an attack model that maps each observed query to a linear equation involving semantic locations, and we show that a necessary condition to preserve privacy is the existence of infinite solutions in the resulting system of linear equations. Based on this observation, we develop algorithms that generate groups of semantic locations, which preserve privacy and minimize the expected query processing and communication cost. The experimental evaluation demonstrates that our approach reduces significantly the privacy threats, while incurring minimal overhead.
Conference: Location- and Context-Awareness - LOCA , pp. 70-87, 2009
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: