Academic
Publications
Water-soluble low-molecular-weight cellulose chains radially oriented on gold nanoparticles

Water-soluble low-molecular-weight cellulose chains radially oriented on gold nanoparticles,10.1007/s10570-011-9535-x,Cellulose,Yukiko Enomoto-Rogers,

Water-soluble low-molecular-weight cellulose chains radially oriented on gold nanoparticles   (Citations: 1)
BibTex | RIS | RefWorks Download
Cellulose chains bearing N-lipoyl group at the reducing-end as a sulfide linker, self-assembled on the surface of gold nanoparticles (CELL2Au, CELL13Au, and CELL41Au with the number average degrees of polymerization (DPn) of 2, 13, and 41, respectively) were prepared. CELL2Au, CELL13Au, and CELL41Au were obtained via deprotection of the cellulose triacetate (CTA) self-assembled on the surface of gold nanoparticles that are consisting of CTA chains with corresponding DPn organized in a radial manner with head-to-tail orientation, where a head is the reducing-end, and a tail is the non-reducing-end. CELL2Au and CELL13Au were well-dispersed in water including a trace of methanol, whereas CELL41Au was not. The transmission electron microscopy (TEM) observation of CELLAus deposited on copper grids revealed that the diameters (d) of the gold cores of CELL2Au, CELL13Au, and CELL41Au were 6.1, 6.1, and 11.5 nm, respectively. Wide angle X-ray diffractgram showed that cellulose chains of CELL13Au had quite low crystallinity and exhibited additional faint diffraction pattern of cellulose II. Cellulose chains of CELL41Au were amorphous. The UV–vis measurements revealed that CELL2Au and CELL13Au were well-dispersed in water. The hydrodynamic diameters (D) of CELL2Au and CELL13Au in water were 21.8 and 55.9 nm, respectively, according to dynamic light scattering (DLS) measurements, suggesting that cellulose chains on the gold were organized in a radial manner with head-to-tail orientation. 1H-NMR measurement revealed that low-molecular-weight cellulose chains (DPn = 13) on the gold dissolved in water, whereas low-molecular-weight cellulose (DPn = 13) itself did not.
Journal: Cellulose , vol. 18, no. 4, pp. 929-936, 2011
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: