Academic
Publications
Low doses of 3-aminobenzamide, a poly(ADP-ribose) polymerase inhibitor, stimulate angiogenesis by regulating expression of urokinase type plasminogen activator and matrix metalloprotease 2

Low doses of 3-aminobenzamide, a poly(ADP-ribose) polymerase inhibitor, stimulate angiogenesis by regulating expression of urokinase type plasminogen

Low doses of 3-aminobenzamide, a poly(ADP-ribose) polymerase inhibitor, stimulate angiogenesis by regulating expression of urokinase type plasminogen activator and matrix metalloprotease 2  
BibTex | RIS | RefWorks Download
Background  Poly(ADP-Ribose) polymerase (PARP) activity has been demonstrated fundamental in many cellular processes, including DNA repair, cell proliferation and differentiation. In particular, PARP activity has been recently found to affect proliferation, migration, and tube formation of human umbilical vein endothelial cells. In recent times, PARP inhibitors have entered in clinical trials to potentiate cancer treatments by preventing DNA repair, but little is known about the effects performed by different drug concentrations on neoangiogenesis, an essential step in tumor growth. Methods  Human umbilical vein endothelial cells were treated with 3 aminobenzamide (3ABA), a PARP inhibitor, and tested for several different cellular parameters. Results  Here we present in vitro evidence that a low concentration of 3ABA (50 μM), stimulates angiogenesis by decreasing fibrinolytic activity, carried out by urokinase-type plasminogen activator (uPA), and by enhancing matrix metalloprotease-2 (MMP-2) gelatinolytic activity, in fibroblast growth factor-2-stimulated endothelial cells. These unbalanced pathways modify in vitro angiogenic steps, inhibiting chemoinvasion and stimulating tubulogenic activity. Conclusions  Our results suggest that the proangiogenic effect of low concentrations of 3ABA alerts on the efficacy of PARP inhibitors to potentiate anticancer therapy. Moreover, they indicate that endothelial chemoinvasion and tubulogenesis depend on distinct proteolytic pathways.
Journal: Journal of Angiogenesis Research , vol. 3, no. 1, pp. 1-10, 2011
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.