Academic
Publications
Detection and characterization of spontaneous internal deletion mutants of Beet Necrotic yellow vein virus RNA3 from systemic host Nicotiana benthamiana

Detection and characterization of spontaneous internal deletion mutants of Beet Necrotic yellow vein virus RNA3 from systemic host Nicotiana benthamia

Detection and characterization of spontaneous internal deletion mutants of Beet Necrotic yellow vein virus RNA3 from systemic host Nicotiana benthamiana  
BibTex | RIS | RefWorks Download
Background   Beet Necrotic Yellow Vein virus (BNYVV) is a member of the genus Benyvirus causing a worldwide sugar beet disease rhizomania. BNYVV contains four or five plus-sense single stranded RNAs. In altered selective conditions, multipartite RNA viruses of plant are prone to undergoing internal deletions, thus turning into Defective RNAs (D RNAs). Although several D RNAs have been reported in BNYVV infection, the spontaneous internal deletion mutants responsible for severe symptom in systemic host Nicotiana benthamiana (N. benthamiana) are not described so far. Results  Systemic host N. benthamiana was inoculated by Chinese BNYVV isolates. RT-PCR and Northern blot showed that the D RNAs forms of BNYVV RNA3 were present in the systemic infection of the N. benthamiana. Three distinct D-RNA3s, named as D-RNA 3α, D-RNA 3β and D-RNA 3γ, were made into infectious clones. When inoculated on the N. benthamiana, the in vitro transcripts of D forms exhibited more stable than that of wild-type RNA3 in systemic movement. Among the detected mutant, the p25 protein frame-shift mutant (D-RNA3α) induced obvious necrotic lesions on Tetragonia.expansa (T. expansa) and pronounced systemic symptom on the N. benthamiana. The D-RNA3α was further mutated artificially to pre-terminate the downstream N protein, leading to the abolishment of the pathogenicity, indicating the N protein was responsible for the necrotic symptom. Conclusion  Our studies demonstrated the internal deletion mutants of BNYVV-RNA3 were spontaneously generated in the systemic infection on N. benthamiana. The internal deletions didn't affect the efficient replication of D-RNA3s, instead by improving the stability and pathogenicity of RNA3 in the systemic host N. benthamiana. Besides, our results also suggested the downstream N protein of RNA3, but not the upstream p25 protein, may play an important role in the systemic infection on N. benthamiana.
Journal: Virology Journal - VIROL J , vol. 8, no. 1, pp. 1-9, 2011
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.