Academic
Publications
Hierarchical likelihood opens a new way of estimating genetic values using genome-wide dense marker maps

Hierarchical likelihood opens a new way of estimating genetic values using genome-wide dense marker maps,10.1186/1753-6561-5-S3-S14,BMC Proceedings,Xi

Hierarchical likelihood opens a new way of estimating genetic values using genome-wide dense marker maps   (Citations: 2)
BibTex | RIS | RefWorks Download
Background  Genome-wide dense markers have been used to detect genes and estimate relative genetic values. Among many methods, Bayesian techniques have been widely used and shown to be powerful in genome-wide breeding value estimation and association studies. However, computation is known to be intensive under the Bayesian framework, and specifying a prior distribution for each parameter is always required for Bayesian computation. We propose the use of hierarchical likelihood to solve such problems. Results  Using double hierarchical generalized linear models, we analyzed the simulated dataset provided by the QTLMAS 2010 workshop. Marker-specific variances estimated by double hierarchical generalized linear models identified the QTL with large effects for both the quantitative and binary traits. The QTL positions were detected with very high accuracy. For young individuals without phenotypic records, the true and estimated breeding values had Pearson correlation of 0.60 for the quantitative trait and 0.72 for the binary trait, where the quantitative trait had a more complicated genetic architecture involving imprinting and epistatic QTL. Conclusions  Hierarchical likelihood enables estimation of marker-specific variances under the likelihoodist framework. Double hierarchical generalized linear models are powerful in localizing major QTL and computationally fast.
Journal: BMC Proceedings - BMC Proc , vol. 5, pp. 1-6, 2011
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: