An improved cellular automaton traffic model considering gap-dependent delay probability
In this paper, the delay probability of the original Nagel and Schreckenberg model is modified to simulate one-lane traffic flow. The delay probability of a vehicle depends on its corresponding gap. According to simulation results, it has been found that the structure of the fundamental diagram of the new model is sensitively dependent on the values of the delay probability. In comparison with the NS model, one notes that the fundamental diagram of the new model is more consistent with the results measured in the real traffic, and the velocity distributions of the new model are relatively reasonable.