FoxP2 brainstem neurons project to sodium appetite regulatory sites

FoxP2 brainstem neurons project to sodium appetite regulatory sites,10.1016/j.jchemneu.2011.05.003,Journal of Chemical Neuroanatomy,Jung-Won Shin,Joel

FoxP2 brainstem neurons project to sodium appetite regulatory sites   (Citations: 1)
BibTex | RIS | RefWorks Download
The transcription factor Forkhead box protein 2 (FoxP2) is expressed in two cell groups of the brainstem that have been implicated in sodium appetite regulation: the pre-locus coeruleus (pre-LC) and parabrachial nucleus – external lateral-inner subdivision (PBel-inner). Because the connections of these two groups are unknown, neuroanatomical tracing methods were used to define their central projections. The pre-LC outputs were first analyzed using an anterograde axonal tracer –Phaseolus vulgaris leucoagglutinin (PHAL) to construct a brain map. Next, we examined whether the FoxP2 immunoreactive (FoxP2+) neurons of the pre-LC contribute to these projections using a retrograde neuronal tracer – cholera toxin β-subunit (CTb). CTb was injected into selected brain regions identified in the anterograde tracing study. One week later the rats were killed, and brainstem sections were processed by a double immunohistochemical procedure to determine whether the FoxP2+ neurons in the pre-LC and/or PBel-inner contained CTb. FoxP2+ pre-LC neurons project to: (1) ventral pallidum; (2) substantia innominata and bed nucleus of the stria terminalis; (3) paraventricular, central medial, parafascicular, and subparafascicular parvicellular thalamic nuclei; (4) paraventricular (PVH), lateral, perifornical, dorsomedial (DMH), and parasubthalamic hypothalamic nuclei; and (5) ventral tegmental area (VTA), periaqueductal gray matter (PAG), dorsal and central linear raphe nuclei. FoxP2+ PBel-inner neurons project to the PVH and DMH, with weaker connections to the LHA, VTA, and PAG. Both the pre-LC and PBel-inner project to central sites implicated in sodium appetite, and related issues, including foraging behavior, hedonic responses to salt intake, sodium balance, and cardiovascular regulation, are discussed.
Journal: Journal of Chemical Neuroanatomy - J CHEM NEUROANAT , vol. 42, no. 1, pp. 1-23, 2011
Cumulative Annual
View Publication
The following links allow you to view full publications. These links are maintained by other sources not affiliated with Microsoft Academic Search.
Sort by: